دانش، زندگیِ دلهاست و روشنایی دیدگان از نابینایی و توانایی پیکرها ازناتوانی . [پیامبر خدا صلی الله علیه و آله]
جواد میرباقری - تازه ها از الکترونیک بهترین و زیباترین کدهای جاوا اسکریپت به همراه آزمایش آن کد
  • پست الکترونیک
  • شناسنامه
  •  RSS 
  • پارسی بلاگ
  • پارسی یار
  • از کشف ابررسانایی در سال 1911 میلادی تا سال 1986 ، باور عموم بر آن بود که ابررسانایی فقط می تواند در فلزاتی در دماهای بسیار پایین وجود داشته باشد، که فقط در دماهای حداکثر 25 درجه بالای صفر مطلق اتفاق می افتاد. با کشف ابررسانایی در دماهای بالاتر در سال 1986 ، در موادی که تقریبا ضد فرو مغناطیسی بودند، و در هواپیماهای شامل a nearly square array of اتم های مس و اکسیژن، فصل جدیدی در علم فیزیک باز کرد. حقیقتا، درک ظاهر شدن ابررسانایی در دماهای بالا (حداکثر دمای 160 کلوین) یک مساله ی بزرگ برای بحث کردن می باشد. تا آن جا که امروزه بیش از ده هزار محقق روی این موضوع تحقیق و بررسی انجام می دهند.

    پس از مقدمه ای بر مفاهیم پایه ی فلزات معمولی و مرسوم، دمای پایین، و ابررسانایی، مروری بر نتایج مشاهدات انجام شده در دهه ی گذشته خواهم داشت ، که نشان می دهند ابررساناهای دمای بالا فلزات عجیبی با خواص غیرعادی بسیار بالای ابررسانایی می باشند. سپس، پیشرفت های نظری اخیری را شرح خواهم داد که طبیعت چنین فلزات عجیب را آشکار می سازد، و به شدت این پیشنهاد را که "تعامل مغناطیسی بین تحریکات ذره ی quasi مسطح است که رفتار حالت عادی آن ها را به هم می زند و باعث روی دادن حالت ابررسانایی در دماهای بالا می شود" پشتیبانی و تایید می کنند.

    مقدمه :

    در سال 1911 ، H. Kamerlingh-Onnes هنگام کار کردن در آزمایشگاه دمای پایین خود کشف کرد که در دمای چند درجه بالای صفر مطلق، جریان الکتریسیته می تواند بدون هیچ اتلاف اختلاف پتانسیل در فلز جیوه جریان پیدا کند. او این واقعه ی منحصر به فرد را "ابررسانایی" (Superconductivity) نامید. هیچ نظریه ای برای توضیح این رخداد در طول پنجاه و شش سال بعد از کشف ارائه نگردید. تا وقتی که در 1957 ، در دانشگاه الینویس ، سه فیزیکدان : John Bardeen ، Leon Cooper ، و Robert Schrieffer نظریه ی میکروسکوپی خود ارائه کردن که بعدا با نام تئوری BCS (حروف ابتدایی نام محققان ) شناخته شد. سومین رخداد مهم در تاریخ ابررسانایی در سال 1986 اتفاق افتاد، وقتی که George Bednorz و Alex Mueller ، در حال کار کردن در آزمایشگاه IBM نزدیک شهر زوریخ سوئیس، یک کشف مهم دیگر کردند : ابررسانایی در دماهای بالاتر از دماهایی که قبلا برای ابررسانایی شناخته شده بودند در فلزاتی کاملا متفاوت از آنچه قبلا فلز ابررسانا شناخته می شود. این کشف باعث ایجاد زمینه ی جدید ی در علم فیزیک شد : مطالعه ابررسانایی دمای بالا، یا .

    در این مقاله، که برای غیر متخصص ها تنظیم گشته است، این را که ما چقدر در فهم دمای بالا پیشرفت کرده ایم را توضیح خواهم داد و درباره چشم انداز های آینده ی توسعه ی یک نظریه ی میکروسکوپی بحث خواهم کرد. من با مروری بر برخی مفاهیم پایه ی نظریه ی فلزات شروع می کنم؛ برخی اقدامات که منجر به ارائه ی نظریه BCS گشت را توضیح می دهم؛ و کمی در باره ی تئوری BCS بحث خواهم کرد و آن را توضیح خواهم داد. سپس مختصرا در باره ی پیشرفت هایی که به فهم ما از ابررسانایی و ابرسیالی، در جهان ارائه شده است، بحث خواهم کرد، پیشرفت هایی که بوسیله الهام از تئوری BCS بدست آمده اند. که شامل کشف رده های زیادی از مواد ابرسیال می باشد، از هلیوم 3 مایع که چند میلی درجه بالاتر از صفر مطلق به حالت ابرسیالی در می آید تا ماده ی نوترون موجود در پوسته ی سیاره ی نوترون، که در چند میلیون درجه به حالت ابرسیالی در می آید. سپس درباره ی تاثیرات کشف مواد ابررسانای دمای بالا بحث خواهم کرد ، و برخی نتایج تجربی کلیدی را جمع بندی خواهم کرد. سپس یک مدل برای ابررسانایی دمای بالا ارائه خواهم داد ، نزدیک به نظریه ی ضد فرومغناطیسی مایع فرمی ، که به نظر دارای توانایی ارائه ی مقدار زیادی از خواص غیرعادی حالت معمولی مواد ابررسانای سطح بالا می باشد. من با یک توضیح تجربی برای خواص جالب توجه حالت عادی ابررساناهای پیش بینی شده و در دست بررسی جمع بندی و نتیجه گیری می کنم، که یک رده جالب از مواد را معرفی می کند : مواد قابل تطبیق پیچیده . که در آن بازخورد غیرخطی طبیعی، چه مثبت و چه منفی، نقشی حیاتی در تعیین رفتار سیستم باز ی می کنند.

    ابررساناهای مرسوم : از کشف تا درک ...

    در سخنرانی نوبل خود در سال 1913 ، Kammerlingh-Onnes گزارش داد که "جیوه در 4.2 درجه کلوین به حالت جدیدی وارد می شود، حالتی که با توجه به خواص الکتریکی آن، می تواند ابررسانایی نام بگیرد. او گزارش داد که این حالت می تواند به وسیله ی اعمال میدان مغناطیسی به اندازه ی کافی بزرگی از بین برود. در حالی که یک جریان القاء شده در یک حلقه بسته ابررسانا به مدت زمان فوق العاده زیادی باقی می ماند و از بین نمی رود. او این رخداد را به طور عملی با آغاز یک جریان ابررسانایی در یک سیم پیچ در آزمایشگاه لیدن، و سپس حمل سیم پیچ همراه با سرد کننده ای که آن را سرد نگه می داشت به دانشگاه کمبریج به عموم نشان داد.

    این موضوع که ابررسانایی مساله ای به این مشکلی ارائه کرد که 46 سال طول کشید تا حل شود، خیلی شگفت آور می باشد. دلیل اول این می تواند باشد که جامعه ی فیزیک تا حدود بیست سال مبانی علمی لازم برای ارائه ی راه حل برای این مسئله را نداشت : تئوری کوانتوم فلزات معمولی. دوم اینکه، تا سال 1934 هیچ آزمایش اساسی در این زمینه انجام نشد. سوم اینکه، وقتی مبانی عملی لازم بدست آمد، به زودی واضح شد انرژی مشخصه وابسته به تشکیل ابررسانایی بسیار کوچک می باشد، حدود یک میلیونیم انرژی الکترونیکی مشخصه ی حالت عادی. بنابراین، نظریه پردازان توجه شان را به توسعه ی یک تفسیر رویدادی از جریان ابررسانایی جلب کردند. این مسیر را Fritz London رهبری می کرد. کسی که در سال 1953 به نکته ی زیر اشاره کرد :‌ "ابررسانایی یک پدیده کوانتومی در مقیاس ماکروسکوپی می باشد ... با جداسازی حالت حداقل انرژی از حالات تحریک شده بوسیله ی وقفه های زمانی." و اینکه "diamagntesim یک مشخصه بنیادی می باشد."

    اجازه بدهید کمی درباره ی مبانی علمی کوانتومی بحث کنیم. الکترون ها در فلز در پتانسیل متناوب تولید شده از نوسان یون ها حول وضعیتشان حرکت می کنند. حرکت یون ها را می توان بوسیله ی مد های جمعی کوانتیزه شده ی آنها، فونون ها، توجیه کرد. سپس در طی توسعه ی نظریه ی کوانتوم، نظریه ی پاولی اصل انفجار وجود دارد ، که معنای آن بیانگر مفهوم آن است و آن اینکه - الکترونها به صورت اسپین نیمه کامل ذاتی (half integral intrinsic spin) قرار می گیرند، و در نتیجه هیچ الکترونی نمی تواند طوری قرار بگیرد که عدد کوانتوم آنها با هم یکی باشد. ذراتی که به صورت اسپین نیمه کامل ذاتی قرار می گیرند با نام فرمیون ها (fermions) شناخته می شوند، به خاطر گرامیداشت کار های فرمی (Fermi) که ، همراه با دیاک (Diac) ، نظریه ی آماری رفتار الکترون در دماهای محدود را توسعه دادند، این تئوری با نام Fermi-Diac statistics شناخته می شود. در توضیح فضای اندازه حرکت یک فلز ساده، حالت پایه یک کره در فضای اندازه ی حرکت می باشد، که اندازه ی شعاع آن، pf بوسیله ی چگالی فلز تعیین می گردد. انرژی خارجی ترین الکترون ها، در مقایسه با انرژی گرمایی میانگین آن ها، Kt بسیار بزرگ می باشد. به عنوان نتیجه، تنها بخش کوچکی از الکترون ها ، ، در بالاتر از حالت پایه تحریک می شوند. الکترون ها با هم دیگر ( قانون کلمب ) و با فونون ها تعامل می کنند و رابطه دارند. تحریکات ابتدائی آن ها ذرات quasi ، (quasiparticles) می باشند ، الکترون ها با ضافه ی ابر الکترونی وابسته به آنها و فونون هایی که هنگام حرکت از میان شبکه الکترون را همراهی می کند. یک بحث و مذاکره ی ابتدائی نشان می دهد که طول عمر یک quasiparticle تحریک شده بالای سطح فرمی ( سطح کره ی فرمی ) تقریبا برابر می باشد. مساله و مشکلی که برای نظریه پردازان در رابطه با این مساله پیش آمده، فهم چگونگی تحمل پذیری الکترون ها ی تعامل کننده هنگام رفتن به حالت ابررسانایی ، می باشد. این امر چگونه انجام می شود ؟ توضیح ریاضی مناسب برای این امر چه می باشد ؟

    یک کلید راهنمای بسیار لازم در سال 1950 میلادی بدست آمد، وقتی محققان در Nationa Bearue of Standards و دانشگاه روتگرز کشف کردند که دمای انتقال به حالت ابررسانایی سرب بستگی به جرم ایزوتوپ آن، یعنی M ، دارد ، و رابطه ی عکس با M1/2 دارد. از آنجایی که انرژی لرزشی شبکه ای همان بستگی را با M1/2 دارد، کوانتای پایه ی آنها، فونون ها ، باید نقشی در ظهور و ایجاد حالت ابررسانایی بازی کند. در سال های بعدی، Herber Frohlich ، که از پوردو از دانشگاه لیورپول بازدید می کرد، و John Bardeen کسی که آن زمان در آزمایشگاه های بل کار می کرد، تلاش کردند نظریه ای با استفاده از تعامل الکترون ها و فونون ها ارائه بدهند، ولی شکست خوردند و موفق نشدند. کار انجام شده توسط آن ها را می توان به کمک دیاگرام های معرفی شده توسط ریچارد فاینمن (Richar Feynman) به تصویر کشید، که در قسمت (a) تصویر زیر نشان داده شده است. در تصویر زیر می توان یک الکترون را مشاهده کرد که یک فونون را آزاد می کند و سپس آن را جذب می کند. خواص آن بوسیله جفت شدن پویا با شبکه تغییر می یابند و تغییر در انرژی آن نسبت عکس با M1/2 دارد . اما این quasiparticle ها به حالت ابررسانایی در نمی آیند.

    سپس Frohlich احتمال دوم را در نظر گرفت، حالتی که در تصویر بالا قسمت (b) نشان داده شده است، که در آن یک الکترون یک فونون را آزاد می کند و الکترون دومی آن فونون را جذب می کند. این تعامل فونون القایی می تواند برای الکترون ها ی نزدیک سطح فرمی جذاب باشد. این یک معادله فلزی waterbed می باشد : دو شخص که یک waterbed را به اشتراک می گذارند، تمایل دارند تا به مرکز آن جذب شوند، همان طوری که روند القاء الکترون ها را جذب می کند. (یک شخص تورفتگی را در waterbed القاء می کند، تورفتگیی که شخص دوم را جذب می کند.) تعامل مطالعه شده توسط Frohlich در نگاه جذاب و زیبا به نظر می رسد، که هم جدید بود و هم ذاتا تناسب درستی با جرم ایزوتوپی، M ، داشت. اگر چه مشکلی بزرگ در درک چگونگی نقش بازی کردن آن وجود داشت، از آن جا که تعامل پایه ای کلمب (Coulomb) بین الکترون ها دفع کننده می باشد، و خیلی قوی تر می باشد. همانطور که لاندو (Laundau) قرار داد : "شما نمی توانید قانون کولمب را لغو کنید." این اشکالی بود که John Bardeen و نویسنده ی این مقاله، دیوید پاینس (David Pines) (هنگامی که اولین دانشجوی دکترا در دانشگاه ایلیونیس در سال های 1952-1955 بود) ، آن را مورد انتقاد قرار دادند. چیزی که آن ها پیدا کردند، به وسیله ی توسعه ی یک راهبرد که David Bohm و David Pines قبلا برای فهم تعامل های جفت الکترون ها در فلزات توسعه داده بودند، این بود که "پیام ، متوسط است ." ("The Medium is the message") . وقتی آن ها اثر رویه ی به پرده در آوردن الکترونیکی (Electronic Screening) روی هر دو تعامل الکترون-الکترون و الکترون-آهن را در نظر گرفتند، فهمیدند که حضور جزء تشکیل دهنده ی دومی، یونها ، یک تعامل جذاب شبکه ای را بین یک جفت الکترون که تفاوت انرژی آن ها از انرژی یک فونون بنیادین کمتر می باشد، ممکن می سازد .

    که در آن ثابت دی الکتریک استاتیک وابسته به watervector می باشد، انرژی فونون می باشد، q انتقال اندازه ی حرکت می باشد، و تفاوت بین انرژی الکترون ها می باشد. ترتیب ها آن به صورت جزئی تر توسط Leon Cooper مطالعه شده است . او فهمید که به خاطر این جذابیت شبکه ای، سطح فرمی حالت عادی می تواند در دماهای پائین به تشکیل جفت الکترون هایی با اسپین و اندازه حرکت مخالف، بی ثبات شود. با کار او، راه حلی برای ابررسانایی نزدیک بود. در سال 1957 میلادی، هنگامی که Bob Schrieffer ، کسی که دانشجوی فارغ التحصیلی Bardeen در دانشگاه الیونیس بود، فهمید که توضیح میکروسکوپی داوطلب حالت ابررسانایی، می تواند با به کار بردن راهبردی که قبلا برای پلارن ها توسعه یافته بود، توسعه یابد. (به وسیله ی T.D. Lee ، Francis Low و David Pines ) به جفت های تعامل کننده ی کوپر. در هفته های بعدی، Bardeen ، Cooper ، و Schrieffer نظریه ی میکروسکوپی ابررسانایی خود، تئوری BCS را ارائه دادند. که این تئوری در توضیح و تفسیر رویداد ها ی ابررسانایی موجود و هم چنین در پیش گویی رویداد های جدید بسیار موفق بود. در جولای 1959 ، در اولین کنفرانس عظیم در رابطه با ابررسانایی بعد از ارائه ی نظریه ی BCS ، (در دانشگاه کمبریج) ، David Schoenberg کنفرانس را با این جمله آغاز کرد : "حالا ببینیم تا چه حدی مشاهدات با حقایق نظری جور در می آیند ..."

    تئوری BCS و اثرات آن

    در تئوری BCS جذابیت زیادی بین جفت الکترون های دارای اسپین و اندازه حرکت مخالف هستند و مسئول انتقال به حالت ابررسانایی هستند وجود دارد. پایین درجه ی حرارت تبدیل به حالت ابررسانایی، ، جفت هایی از هم چگال ها، یک حالت کوانتومی یگانه ی اشغال شده ی ماکروسکوپیک، که بدون مقاومت جریان می یابد، و میدان های مغناطیسی خارجی ضعیف را screen out می کند، باعث بوجود آمدن یک دیامگنتیزم اندازه گیری شده در اثر میزنر (Meissner) می شود. در دماهای پایین، این باعث مصرف انرژی محدودی می گردد، ، برای جداسازی یکی از جفت ها در هم چگال؛ این شکاف انرژی است که توسط London پیش بینی شده بود؛ و اثرات آن بر روی خواص ابررسانایی توسط John Bardeen در سال های قبل از کشف و ارائه ی تئوری میکروسکوپی به صورت رخدادی بررسی شده بود.بنابراین، حالت ابررسانایی توسط دو جزء تشکیل دهنده مجزا مشخص می شود : یک ابرمیدان (superfield) ، هم چگال، و یک سیال معمولی تشکیل شده از تحریکات تک ذره ای که از جدا شدن از هم هم چگال در دماهای محدود نتیجه می شود. quasiparticle های تحریک شده که سیال معمولی را تشکیل می دهد، در پاسخ به میدان های خارجی ، اثرات منسجم معلوم و مشخصی را از خود نشان می دهند، پدیده ی انسجام که یکی از مشخص کننده های تئوری جفت کننده ی BCS می باشد، اما وگرنه بصورت معمولی رفتار می کنند، که در آن با یکدیگر، با فونون ها ، و با دیواره های ظرف شامل آن ها برخورد می کنند. طول بنیادی که رفتار منسجم در آن می تواند اتفاق بیافتد، طول انسجام (coherence length) ، چند هزار برابر فاصله ی بین ذرات داخلی می باشد. برای درک کردن آن چه اتفاق می افتد، در نظر گرفتن قیاس با یک زمین رقص پر شده از زوج های رقاص که هماهنگ با موزیک حرکت می کنند، می تواند کمک کننده باشد. در حالت عادی، زوج ها مرتبا با یکدیگر برخورد می کنند، اما در حالت ابررسانایی، آن زوج هایی که تعلق به هم چگال دارند، دارای یک قید و بند نامرئی می باشند که به آن ها اجازه می دهد تا به راحتی به حول سالن رقص رقص کنند(a la Rogers And Astaire) و پرواز کنند. اگر زوج های جدا کننده ای وجود دارند؛ فقط منفردهای تحریک شده ی غیر متصل هستند که با یکدیگر و دیوار ه ی سالن رقص برخورد می کنند. تبدیل به ابررسانایی BCS اساسا متفاوت از آن چه ممکن است اگر زوج ها بالای تشکیل شده باشند، سپس متراکم شوند، اتفاق بیافتد، می باشد. و در مورد اخر، طول انسجام چندین برابر فضای بین ذره ای می باشد و بستگی به ندارد.

    نظریه ی BCS اثر قابل توجهی در زمینه های دیگر فیزیک داشت. این نظریه پیش بینی می کند که هر سیستم دارای فرمیون های تعامل کننده، می تواند به حالت ابررسانایی برود ، یا در صورت فرمیون های بدون بار، یک تبدیل ابرسیالی، یکی دارای تعامل جذاب برای فرمیون های شبکه ای در مجرای تکانه ی زاویه ای ارائه دهد. کمی بعد از انتشار نتایج اولیه ی تئوری BCS ، Aage Bohr ، Ben Mottleson و David Pines ، در حال کار در کپنهاگ در سال 1957 ، نشان دادند که نوترون ها و پروتون های موجود در هسته ی اتم به خاطر جذب دوسویه شان جفت می شوند، و اینکه می توان معمای قدیمی پدیده ی هسته ای را توجیه کند، در حالی که Yoichiro Nambu در شیکاگو کشف کرد که ترتیب جفت کردن BCS برای پدیده های انرژی بالا در فیزیک ذرات ابتدائی پیدا می شود. حضور ابرسیالات پروتون و نوترون در پالسارهای (pulsar) تازه کشف شده در 1989 احضار شد. (توسط Gordon Baym ، Chris Pethick ، Mal Ruderman ، و David Pines ) به عنوان توضیح برای زوال طولانی مدت glitch ها (پرش های ناگهانی در مدت چرخش پالسار) که در پالسارهای Vela و Crab در سپتامبر و مارس 1969 کشف شده بود. از آنجایی که اتمهای هلیوم 3 فرمیون هستند و دارای جذب برد بالا می باشند، به طور وسیعی انتظار می رفت که هلیوم 3 به تبدیل حالت ابرسیال برود، و جامعه فیزیک دمای پایین به دنبال نشانه هایی از آن تبدیل گشت، یک جستجویی که برای Doug Osheroff ، David Lee ، و Bob Richardson در دانشگاه کورنل موفقیت آمیز بود، و در سال 1972 کشف کردند که هلیوم 3 چند میلی درجه بالای صفر مطلق ابر سیال می شود.

    نیازی به گفتن نیست که، الهام شده توسط تئوری BCS ، آزمایشگر های مواد منقبض، رده ی جدیدی از فلزات ابررسانا را معرفی کردند، و مشتاقانه به دنبال موادی که در دماهای نسبتا بالاتر از دماهای تبدیل کمتر از 20 کلوین، که فلزات ابررسانای معمولی را مشخص می کند، ابررسانا می شوند، گشتند. دو رده ی جدید از ابررساناها کشف شدند : مواد الکترون سنگین ، CeCu2Si2 ، UPt3 ، و UBe13 که توسط Frank Steglich ، Zackary Fisk ، Jim Smith ، و Hans Ott در آلمان، در حال کار کردن در Los Alamos ، به عنوان ابررسانا در دماهای حدود یک کلوین شناخته شدند. در حالی که Daniel Jerome در پاریس ابررسانایی را در فلزات آلی تقریبا دو بعدی در حدود ده درجه ی کلوین را کشف کرد. اگرچه ، باوجود تلاش های زیاد Bend Matthias ، که حدود صد ماده ی ابررسانا را کشف کرد، هنوز حد بالایی برای دمای مواد ابررسانا وجود داشت : 23 درجه ی کلوین ، درجه ی حرارتی که از مکانیسم به کار رفته برای ابررسانایی ناشی می شد، تعامل فونون-القائی.

    ابررساناهای دمابالا

    زمینه ای جدید در علم فیزیک آغاز شد هنگامی که در 27 ژانویه 1986 میلادی، Bednorz و Mueller یک افت مقاومت تیز را در La2-mBamCuO4 در دمای حدود 30 درجه ی کلوین مشاهده کردند. آن ها مقاله ای در این باره به یکی از روزنامه های معتبر اروپائی، ZeitSchrift fur Physik فرستادند و مطالعه ی خود را برروی این ماده ی جدید ادامه دادند تا اطمینان حاصل کنند که تغییر مقاومت ناگهانی، تبدیل به یک حالت ابررسانایی بوده. تا ماه اکتبر، آن ها اثر مایزنر (The Meissner Effect) را مشاهده کرده بودند ، بنابراین یک ماده ابررسانای جدید را به ثبت رساندند. نتایج آن ها در دنیا پخش شد، یک ماه بعد، Tanaka و همکاران وی در توکیو نتایج Bednorz-Muller را تأیید نمودند (یک تأییدیه در یکی از روزنامه های ژاپنی چاپ شد) در حالی که کار آن ها در پکن توسط Zou و همکارانش پشتیبانی و حمایت شد. (کار آنها در دسامبر در یکی از روزنامه ها توضیح داده شد.) در ماه بعد، در نتیجه ی یک تلاش همکارانه بین Paul Chu از دانشگاه هوستون و Mang-Kang Wu از دانشگاه آلاباما، عضو جدیدی از خانواده مواد ابررساناهای دما بالا کشف شد ، YBa2Cu3O7 که دارای بالای 70 درجه ی کلوین بود. بنابراین فقط در طی یک سال از کشف اصلی، دمای انتقال به حالت ابررسانایی افزایش سه برابر داشت. و واضح بود که انقلاب ابررسانا ها هنوز شروع شده است. یک جشن برای بوجود آمدن این فصل در علم فیزیک طی یک جلسه در نیویورک توسط انجمن فیزیک دانان آمریکایی در یک بعد از ظهر یکی از روزهای مارس 1987 برگزار شد. این جشن 3000 شرکت کننده داشت و 3000 نفر نیز این جشن را از طریق تلویزیون مشاهده می کردند ...

    در طول شش سال بعد، چند خانواده ی دیگر از ابررسانا ها کشف شدند، که شامل سیستمهای مبنی بر -Tl و -Hg می باشند، که به ترتیب دارای حداکثر 120 کلوین و 160 کلوین می باشند. همگی آنها یک ویژگی که موجب روی دادن ابررسانایی دمای بالا بود، داشتند، وجود پلین های (planes) شامل اتم های O و Cu ی که جدا شده بوسیله ی مواد پل کننده ای که به عنوان حامل بار عمل می کنند هستند. در طی این مدت، حدود چند هزار مقاله در رابطه با ابررسانا ها منتشر گشت (و در زمان حاضر هم منتشر می شود) بدیهی گشت که ابررسانایی دمای بالا وابسته به مسائل بزرگ فیزیک بسیاری در طول دهه ی گذشته ی این قرن بود. حداقل چهار دلیل برای علاقه ی شدید به بالا وجود دارد : یک علاقه ی علمی ذاتی و باطنی، طبیعت انتقال نظم و ترتیبی، (این به حدود جدا کننده ی دانشمندان و شیمی دان های مواد از طریق فیزیکدان های نظری و تجربی می رسد) ؛ کاربردهای بالقوه برای مواد ی که دردماهای بالاتر از 77 کلوین (دمایی که نیتروژن مایع می شود) به عنوان ابررسانا عمل می کنند، کاربردهایی که می توان در سیستم های تلفن سلولی اعمال کرد، خطوط انتقال ابررسانایی، ماشین های MRI استفاده کنند از مغناطیس های بالا، میکروویو های استفاده کننده از مواد ابررسانای جدید، سیستم های ابررسانا/نیمه رسانای هیبریدی؛ و در آخر پیدا کردن ابررسانای دمای اتاق.

    برخی مشخصه ها و خواص ابررسانا های جدید عبارتند از اینکه آن ها سرامیک، و اکسید های ورقه ورقه می باشند که در دمای اتاق فلزات ضعیف و بی ارزشی هستند، و مواد متفاوتی برای کار کردن هستند. شامل کمی حامل بار در مقایسه با فلزات معمولی هستند، و خواص انیسوتوروپیک (Anisotropic) الکتریکی و مغناطیسی هستند که بطور قابل ملاحظه ای حساس به محتوای اکسیژن می باشند. در حالی که، نمونه های ابررسانای مواد 1-2-3 ، Yba2Cu3O7 ، را یک دانش آموز دبیرستانی نیز می تواند در یک اجاق میکروویو تولید کند، کریستال های یکتای دارای درجه ی خلوص بالا برای تشخیص خواص فیزیکی ذاتی موادی که ساختن آن ها به طور خیلی زیادی سخت است، لازم است.

    در ادامه ی یک دهه کار، یک وفاق عمومی بر سر این موضوع وجود دارد که رفتار تحریکات ابتدائی در پلین های (planes) ، Cu-O یک کلید برای درک خواص حالت عادی این ابررساناها ارائه می دهد، و اینکه آن خاصیت غیر حالت عادی شبیه به حالت عادی ابررساناهای معمولی و دمای پایین می باشند. همانطور که می توان در جدول زیر مشاهده کرد، هم پاسخ بار (charge respons) - (اندازه گیری شده در مشاهدات نوری و انتقالی) و هم پاسخ اسپین (اندازه گیری شده در مشاهدات قابلیت ایستا، تشدید مغناطیسی هسته ای (NMR) و مشاهدات متفرق ساختن غیر الاستیک نوتورون ها (INS)) مواد بالا بسیار متفاوت از همتاهای دمای پایین خود می باشند.

    علاوه بر این، اساسا هیچ یک از خواص حالت ابررسانایی ، با خواص یک ابررسانای عادی یکی نیست، که در آن جفت کردن BCS در حالت خط واحد اتفاق می افتد و شکاف انرژی ذرات quasi در دماهای پائین و ایزوتپریک، هنگامی که یکی حول سطح فرمی حرکت می کند، محدود می باشد. علی رغم این حقیقت که چیزی نسبتا جدید و متفاوت نیاز است تا رفتار حالت عادی را درک کنیم، یک توافق و اجماع وجود دارد که تئوری BCS ، اگر بطور مناسبی تغییر یابد، یک توضیح راضی کننده برای انتقال به حالت ابررسانایی و خواص مواد در آن حالت، می دهد .

    یک توافق تقریبی همچنین در رابطه با اجزای سازنده ی پایه ی لازم برای درک ابررساناهای دمای بالا وجود دارد. آن ها را می توان به صورت زیر خلاصه کرد :

    عمل ابتدا در پلین های Cu-O رخ می دهد، پس در تخمین اول، برای متمرکز کردن هم توجه نظری و هم عملی روی رفتار تحریکات پلانار، و همچنین برای متمرکز کردن بر روی دو سیستم مطالعه شده ، سیستم 1-2-3 (YBa2Cu3O7-m) و سیستم 2-1-4 (La2-mSrmCuO4) ، کفایت می کند.

    در دماهای پائین هر دو سیستم عایق های آنتی فرو مغناطیس می باشند با یک آرایه ی محلی +Cu2 که علامت آن در داخل شبکه متناوبا عوض می شود .

    شخصی سوراخ هایی را بر روی پلین های Cu-O سیستم 1-2-3 با تزریق اکسیژن ایجاد می کند، برای سیستم 2-1-4 این کار با تزریق استرونتیوم انجام می گیرد. سوراخ های حاصل روی مقر پلانار اکسیژن ، با اسپین های نزدیک +Cu2 پیوند پیدا می کنند، و حرکت را برای دیگر اسپین های +Cu2 آسان می سازد، و در روند، نابود کردن همبستگی های AF طولانی برد در عایق.

    اگر کسی حفره های کافی را ایجاد کند، سیستم حالات پایه ی خود را از یک عایق به یک ابررسانا تغییر می دهد.

    در حالت عادی مواد ابررسانا ، اسپین های +Cu2 سیار، اما محلی یک مایع فرمی غیر مرسوم را تشکیل می دهند ، با اسپین های quasiparticle های نشان دهنده ی ارتباطات AF قوی، حتی برای سیستم های در سطح تخدیر که از حدی که ماکزیمم می باشد، تجاوز می کند ، موادی که با نام فرا-تخدیر شناخته می شوند. اگر چه هیچ توافقی بین تئوریسین ها بر سر این که چگونه یک توضیح نظریه ای دارای جزئیات برای curpate ها ارائه کنند. راهکرد هایی که برای اینکار امتحان شد، را می توان به از پایین به بالا- یا از بالا به پایین رده بندی کرد. در راهکرد از بالا به پائین، یکی مدلی را که از قبل وجود داشته را انتخاب می کند و راه حل هایی برای انتخاب های دیگر پارامترهای مدل را توسعه می دهد ، سپس تست می کند که آیا این راه حل به نتایج منطبق بر شواهد و تجربیات رسیده اند یا نه. در یک راهکرد از پائین به بالا، یک از نتایج تجربی آغاز می کند و تلاش می کند تا یک توضیح پدیده ای از یک زیر مجموعه از نتایج تجربی را بدست آورد. سپس چند آزمایش دیگر را متناسب با توضیح بدست آمده انجام می دهد ، با ترتیب میکروسکوپی برای هر آزمایش، تا اینکه به نتایج مورد انتظار از محاسبات و مشاهدات دست بیابد. و فقط آن وقت، بدنبال یک مدل همیلتونی که راه حلش ممکن است تئوری میکروسکوپی کامل را ارائه دهد، بگردد و جستجو کند. Jonh Bardeen از این راهکرد دوم برای کار کردن بر روی ابررساناهای عادی و مرسوم استفاده کرد ، و در دانشگاه اوربانا از روش و راهکرد او برای کار برروی ابررسانای دمای بالا استفاده کردند


    جواد میرباقری ::: جمعه 86/3/11::: ساعت 9:48 صبح
    نظرات دیگران: نظر

    یک توپ را با میله پلاستیکی و دیگر را میله شیشه‌ای باردار کنید سپس آنها را به هم بچسبانید. گاهی دوبار ناپدید می‌شوند و همدیگر را از بین می‌برند. برای بیان این مساله می‌توان از یک قانون ریاضی مبنی بر اینکه اگر حاصل جمع دو کمیت صفر شود، یکی از آن دو مثبت و دیگری منفی است، استفاده نمود. طبق قرارداد به میله پلاستیکی را بار منفی و میله شیشه‌ای را بار مثبت نسبت داده‌اند.

    بیان ساده ای از قانون بقای بار

    وقتی که یک میله پلاستیکی را با خز مالش می‌دهیم، میله بار منفی و خز بار مثبت پیدا می‌کند. آزمایش را با دو جسم خنثی شروع می‌کنیم، یعنی مجموع بار آن دو برابر صفر است. بعد از مالش دادن ، یکی بار مثبت و دیگری بار منفی می‌یابد که باز هم بار کل برابر صفر می‌شود. همچنین وقتی میله‌ای بار مثبت بیابد، بار جسم پلاستیکی که میله شیشه‌ای را با آن مالش می‌دهیم منفی می‌شود.

    هیچ کس نمی تواند یکی از این دو بار را خلق کند، بدون آنکه همزمان دیگری را نیز تولید کرده باشد در یک چنین فرایندی مقدار کل بار تغییر نمی‌کند. این مطلب بیانگر قانون بقای بار الکتریکی است. این قانون همانند قوانین پایستگی جرم و انرژی ، اندازه حرکت خطی ، اندازه حرکت زاویه ای و ... در فیزیک یک قانون بنیادی است.

    قانون بقای بار الکتریکی در اتم

    همه اجسام دارای ذراتی با بار الکتریکی مثبت و منفی هستند. این ذرات هماناتمهایی هستند که جهان مادی را می‌سازند. ابعاد این اتمها از مرتبه آنگستروم است. چندین میلیون از این اتمها ، در کنار هم ، چیزی در حدود یک نقطه نمایان می‌شوند. هر اتم از لحاظ بار الکتریکی خنثی است، زیرا به تعداد مساوی بار مثبت و منفی دارد. بار مثبت اتم و تقریبا تمامی جرم آن ، در مرکز آن ، یعنی در هسته متمرکز شده است. ابعاد هسته ده هزار برابر کوچکتر از ابعاد کل اتم است. هسته یک خوشه محکم به هم چسبیده متشکل از دو نوع ذره پروتونها و نوترونهاست.

    تراکم جرم در این ذرات غیر قابل تصور است. یک تفاوت مهم بین پروتونها و نوترونها این است که پروتونها دارای بار الکتریکی مثبت بوده ولی نوترونها از نظر بار الکتریکی خنثی هستند. تعداد پروتونها هسته ، عنصر شیمیایی را که هسته به آن تعلق دارد، مشخص می‌کند، با این حال قسمت اعظم فضای اتم خالی است، در ناحیه اطراف هسته تعدادی ذره با بار الکتریکی منفی به نام الکترون وجود دارد. جرم الکترون کم است، اما بار آن منفی و مقدارش برابر مقدار بار روی پروتون است. از اینرو در یک اتم خنثی تعداد الکترونها در فضای اطراف هسته درست برابر تعداد پروتونها در داخل هسته است. الکترونها توسط نیروی جاذبه الکتریکی در نزدیکی هسته به آن مقید می‌شوند.

    مبادله بار و قانون بقای بار الکتریکی

    گاهی یک تماس ساده میان اجسام ممکن است باعث شود که تعدادی الکترون از یک جسم به جسم دیگر منتقل شود. وقتی میله پلاستیکی با خز مالش داده می‌شود، برخی الکترونها از خز به میله پلاستیکی منتقل می‌شوند. ممکن است تعداد الکترونهایی که به میله پلاستیکی منتقل می‌شوند، در حدود
    ( 9 ^ 10 ) باشد که ظاهرا زیاد است. تعداد کل الکترونهای موجود در میله پلاستیکی در حدود 24 ^ 10 است.

    در فلزات بستگی الکترونها به هسته ضعیف است و الکترونها می‌توانند آزادانه در داخل ماده حرکت کنند. چون بار به راحتی در داخل میله فلزی به هم وصل نماییم، هر دو کره خنثی می‌شوند. ماده ای که بار الکتریکی را از خود عبور می‌دهد رسانا نامیده می‌شود. در جامدات ، فقط الکترونها می‌توانند حرکت کنند. اما محلول الکترولیت ، آب شور یا گاز داخل لامپ فلوئورسانس رساناهای بسیار خوبی هستند. زیرا حاملین بار مثبت و منفی هردو تحت تاثیر نیروی الکتریکی می‌توانند آزادانه حرکت کنند. در تمام فرایندهای مبادله بار و انتقالات اخیر قانون بقای بار الکترکی به دقت ملاحظه می‌شود. به عبارتی نحوه مبادله بار به توسط قانون بقای بار صورت می‌گیرد. در واکنشهای شیمیایی این قانون همانند قانون بقای جرم ظاهر می شود و واکنش را از نظر الکتریکی مجاز می داند که در طرفین واکنش مجموع بارهای الکتریکی برابر باشند
    .


    جواد میرباقری ::: جمعه 86/3/11::: ساعت 9:42 صبح
    نظرات دیگران: نظر

    ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.

    اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛

    هسته ترانسفورماتور:

    هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایق‌اند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.

    در اثر زیاد شدن مقدار سیلیسیم ، ورقه‌های دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یک لایه عایق هستند.

    بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقه‌های ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.

    سیم پیچ ترانسفورماتور :

    معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده می‌کنند. اینها با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر مشخص می‌شوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادی‌ها نیز استاندارد است.

    توضیح سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچ‌ها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایه‌های اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکش‌ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.

    قرقره ترانسفورماتور:

    برای حفاظ و نگهداری از سیم پیچ‌های ترانسفورماتور خصوصا در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از کاغذ عایق سخت ، فیبرهای استخوانی یا مواد ترموپلاستیک می سازند. قرقره هایی که از جنس ترموپلاستیک هستند معمولا یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار کرد. بر روی دیواره های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ از آنها خارج شوند.

    اندازه قرقره باید با اندازه ى ورقه‌های ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. که از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه‌های ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی کرد.

    جواد میرباقری ::: جمعه 86/3/11::: ساعت 9:37 صبح
    نظرات دیگران: نظر

     

    لزوم استفاده از جبر بول
    اصول و قضایای جبر بول
    معرفی توابع سوئیچینگ
    جدول درستی توابع

      پیاده سازی سیستم مبتنی بر 0 و 1 برای کامپیوترهای دیجیتال
    استفاده از جبر بول و منطق درست یا نادرست

    تعریف جبر بول
    سیستمی متشکل از مجموعه ای مانند K با دو یا چند عضو و دو عملگر AND (.) و OR (+) به طوریکه اگر a و b عضو K باشندb 0a و a+b نیز عضو مجموعه K باشند.
     


     

      اصول جبر بول:

    الف) عناصر منحصر به فرد 0 و 1 عضو مجموعه K هستند:
    a+0=a
    a.1=a
    عناصر همانی

    ب)خاصیت جابجایی:
    برای هر عضو a و b در K :
    a+b=b+a
    a.b=b.a

    ج)خاصیت شرکت پذیری:
    برای هر a,b,c در K:
    a+(b+c)=(a+b)+c
    a.(b.c)=(a.b).c

    د)توزیع پذیری:
    برای هرa,b,c در K:
    (a+(b.c)=(a+b).(a+c
    (a.(b+c)=(a.b)+(a.c

    ه) وجود متمم:
    برای هر a در K یک عضو منحصر به فرد ¯a در K وجود دارد به طوریکه:
    برای راحتی در نگارش
    معمولاً از نوشتن . در عبارتها صرف نظر می کنند:
    a.b=ab
     

      قضایای جبر بول:

    A ) هم ارزی:
    a+a=a
    a.a=a

    B) عضو بی اثر برای . و +
    برای عمل +:
    a+0=a
    برای عمل . :
    a.1=a

    C)قضیه بازگشت:
     


     

    D) قضیه جذب:
    a + ab = a
    a(a+b) = a

    E)قضیه شبه جذب:
     



    G) دمورگان :
     

      استفاده از قضایا برای ساده کردن عبارتهای جبر بول

     

      توابع سوئیچینگ

    تابعی از چند متغییر بولی و عملگرهای . و + مانند:
    f(a ,b ,c)= ab + ac + bc
    اگر n متغیر داشته باشیم
    هر متغیر دو حالت: 0 و 1
    بنابراین: 2 به توان n حالت مختلف از ترکیب ورودی ها داریم
    مثال:
     

    a

    0

    1

    b

    a

    0

    0

    1

    0

    0

    1

    1

    1

      جدول درستی

    برای هر تابع سوئیچینگ یا مدار منطقی می توان یک جدول درستی یا جدول مشخصات تعریف کرد که این جدول بیان کننده وضعیت مدارخواهد بود.
     

    در جدول درستی تمامی حالتهای مختلف ورودی های تابع را نشان می دهیم ، سپس به ازای هر ترکیب ورودی بر اساس عملکرد تابع ، خروجی را مشخص می کنیم. به عبارت دیگر این جدول بیان کننده عملکرد منطقی تابع و مدار معادل آن است.  

      فرمهای متعارف SOP و POS
    مینترم ها و ماکسترم ها
    گیتهای منطقی
    قطعات الکترونیک گیت ها

    فرمهای متعارف برای نمایش توابع سوئیچینگ :
    SOP: جمع جملات کمینه
    POS: ضرب جملات بیشینه

    SOP جمع حاصلضرب ها
    OR کردن عبارتهای AND شده
     



    POS ضرب حاصلجمع ها
    AND کردن عبارتهای OR شده
     

      جملات کمینه و بیشینه یا :
    Minterm
    Maxterm

    Minterm ها
    m
    جمله ضرب از همه n متغیر یک تابع به صورت متمم یا غیرمتمم
    در تابع n متغیره 2 به توان n حالت از مینترم ها را داریم
    مثال برای2 متغیر:
     

    Maxterm ها
    M
    جمله جمع از همه n متغیر یک تابع به صورت متمم یا غیرمتمم
    در تابع n متغیره 2 به توان n حالت از ماکسترم ها را داریم
    مثال برای2 متغیر:
     

    شماره گذاری مینترم ها و ماکسترم ها
    تعداد متغیر : n
    تعداد مینترم یا ماکسترم : 2 به توان n
    m0...mn-1
    M0...Mn-1

     

    برای پیدا کردن فرم یک مینترم یا ماکسترم از روی اندیس آن :
    1)عدد اندیس m یا M را به مبنای 2 می بریم
    2)در مینترم به جای 1 خود متغیر و به جای 0 متمم آن را قرار می دهیم
    3)در ماکسترم به جای 0 خود متغیر و به جای1 متمم آن را قرار می دهیم
    مثال:
     

    نمایش استاندارد با مینترم یا ماکسترمهای تابع:
    استفاده از SOP یا POS
    (f(A,B,C برابر است با:
     

      مدارهای منطقی دیجیتال یا مدارهای سوئیچینگ
    ترکیب سری و موازی عناصری به نام گیت
    گیت: مسیرهای باز یا بسته سیگنال
    به لحاظ ساختار فیزیکی قادرند در طی چند نانوثانیه روشن یا خاموش شوند

    در طراحی الکترونیکی مدارهای منطقی دو استاندارد معروف به کار می رود:
    TTL
    در این منطق، 5 ولت معادل 1 منطقی می باشد.

    CMOS
    در این منطق، 12 ولت معادل 1 منطقی می باشد.
     

      انواع گیت :

    گیت AND :
    همانطور که از نامش پیداست مانند "و" رفتار می کند یعنی در صورتی که یکی از ورودیهای آن 0 باشد خروجی آن صفر خواهد بود.
     

    OUT

    IN

    IN

    0

    0

    0

    0

    1

    0

    0

    0

    1

    1

    1

    1

    گیت OR :
     

    OUT

    IN

    IN

    0

    0

    0

    1

    1

    0

    1

    0

    1

    1

    1

    1


    گیت NOT:
    این گیت در ازای ورودی 0 یا 1 معکوس آن را به خروجی می فرستد.
     


    IN=0 ----> OUT=1
    IN=1 ----> OUT=0

     

    گیت NOR:
    این گیت به عنوان یک المان منطقی ساده، عمل دو گیت OR و NOT را با هم ادغام کرده، در یک گیت نشان می دهد و شامل دو یا چند ورودی و یک خروجی می شود.
     

    OUT

    IN

    IN

    1

    0

    0

    0

    1

    0

    0

    0

    1

    0

    1

    1

     

    گیت NAND:
    این گیت به عنوان یک المان منطقی ساده، عمل دو تابع AND و NOT را با هم ادغام کرده، و در یک گیت نشان می دهد. این مدار شامل دو یاچند ورودی و یک خروجی است.
     

    OUT

    IN

    IN

    1

    0

    0

    1

    1

    0

    1

    0

    1

    0

    1

    1


    گیت XOR:
    این گیت شامل دو یا چند ورودی و یک خروجی است. در گیت XOR در صورتی خروجی ما یک می شود که فقط یکی از ورودیهای ما یک باشد.
     

     

    OUT

    IN

    IN

    0

    0

    0

    1

    1

    0

    1

    0

    1

    0

    1

    1

    گیتXNOR:
    این گیت شامل دو یا چند ورودی و یک خروجی است در گیت XNOR در صورتی خروجی یک می شود که یا هر دو ورودی صفر و یا هر دو ورودی یک باشد.
     

    OUT

    IN

    IN

    1

    0

    0

    0

    1

    0

    0

    0

    1

    1

    1

    1

      قطعات الکترونیکی
    گیت های منطقی

    AND
     


     

    OR
     

    NOT
     

    NAND
     

     

    NOR
     

    XOR



    جواد میرباقری ::: سه شنبه 86/2/11::: ساعت 12:14 عصر
    نظرات دیگران: نظر

    این مقاله سخت افزار و نرم افزار به کار رفته در کنترل دو موتور پله ای[1]  را که برای روبوت های با درایور دیفرانسیلی , مناسب می باشند را شرح می دهد.این مدار دو کلمه دو بیتی را می پذیرد تا به هر یک از موتورها فرامین حرکت به جلو , عقب , تثبیت موقعیت و سکون را دهد.همچنین هرگاه یک پله(گام) شکل گرفت (طی شد) , یک سیگنال خروجی ایجاد می کند.این مدار طرحی مناسب می باشد که با آن میتوان تحریک سیم پیچ , سرعت موتور , شکل "کلمه کنترل [2] " وسایر پارامترهای موتورهای تک قطبی و دو قطبی مبتنی بر میکروکنترلر را اصلاح کرد.نرم افزار آن نیز , به زبانهای C  و Assembly تهیه شده است.

     diagram.jpg (49775 bytes)

    مدار سخت افزار:

    مدار مذکور شامل سه آی سی است: PIC16F84  وهمچنین دو درایور پل [3] H  ,L293D برای موتورهای پله ای دوقطبی(شکل پایین) یا دو ULN2803  برای موتور پله ای های تک قطبی.سوای منابع تغذیه , قطعات مدار تنها به :نوسانساز 4MHz  , یک مقاومت بالاکش[4] 10 کیلو اهم و چند کانکتور محدود می شود.در این طرح یک بسته 6 تایی از باتری های 1.2 ولتی ,که اختلاف پتانسیل   7.2 ولت تولید می کنند به طور خطی تنظیم(رگوله) می شوند تا تغذیه منطقی 5 ولتی را تامین نمایند.افت ولتاژ ترانزیستورهای دوقطبی درایور , به ولتاژ 7.2 ولت اجازه نمی دهد موتور را بیش از توان آن درایو کند.

     

     

    " کلمه کنترل"  به دو کلمه کنترل 2 بیتی شکسته شده است:دوبیت باارزش تر  که بیتهای 2و3 از PORTA  هستند , موتورسمت چپ را کنترل نموده و دو بیت کم ارزش تر یعنی بیتهای 0 ,1 از PORTA  موتور سمت راست را کنترل می کنند.برای این مقادیر:00 ,01 ,10 ,11 , کلمه کنترل به موتورها به ترتیب فرامین:جلو ,عقب,تثبیت موقعیت و سکون را  می دهد.این ترتیب را می توان به سادگی عوض کرد(نرم افزار پایین را ببینید)

    بنا به مدار طراحی شده,امکان کنترل سرعت موتور فراهم شده است.بخصوص این که به پالس های کنترلی متناوب برای پیشبرد موتورها نیازی نیست.بعلاوه هنگامی که یک گام(پله) طی شد,مداریک سیگنال خروجی در بیت 4 از PORTA تولید می کند.کنترل کننده اصلی می تواند این سیگنال را بازبینی کند تا هنگامی  که کلمه کنترل بایستی  تغییر کند را مشخص کند.به عنوان مثال برای اینکه  فاصله معینی به جلو حرکت نماید, پردازنده اصلی , تعداد گام های لازم برای دستیابی به این هدف را محاسبه نموده و به این ترتیب فرمان رو به جلو را به موتور صادر می کند.وقتی که تعداد گام های لازم طی شد ,کلمه کنترل می تواند به وضعیت ایست تغییر کند یا مجددا حرکت نماید.در اکثر پردازنده ها عمل شمردن گام ها(پله ها) را می توان به یک فعالیت در پس زمینه موکول کرد تا این امر در هر زمان وبدون دخالت کاربر صورت گیرد.

     

    نرم افزار:

     دو نسخه از نرم افزار موجود است.این یکی در C2C   که نسخه ای خاص از زبان C    است و دیگری در زبان اسمبلی که با کمک چند ماکرو ساختارهای برنامه نویسی سطح بالا ایجاد می کند.

    برنامه  اصلی به سادگی و به تناوب ,PORTA  را جهت یافتن تغییر در کلمه کنترل می خواند.این فرایند هر از چند گاهی هنگامی که  موتور به یک تحریک جدید نیاز داشته باشد توسط وقفه TMR0  متوقف می شود.چون تحریک موتور  دوره ای است , کنترل موتور در پس زمینه اجرا می شود.

    نرم افزار موجود به ما اجازه تغییرات ساده ای در تحریک سیم پیچی موتور ,کلمه کنترل و سرعت موتور را می  دهد.بدین ترتیب می توان به سادگی جدول تحریک را از لحاظ اندازه و محتوی برای نیم پله اصلاح کرد.کلمات کنترل تنها یک شمارش(از صفر تا چهار) هستند.بنابراین می توانیم ترتیب آنها را انتخاب کرده و در صورت لزوم , عوض نمود.باتغییر مقدار اولیه TMR0  می توان سرعت را در مبنای دو تغییر داد.تغییرات بهتر با ایجاد تغییر در مقدار اولیه TMR0  به دست می آیند.

    این خطوط  شبه کد  نرم افزار هستند:      

     

    Constants
    EXCITATION_TABLE_SIZE = 4   // number of excitations in sequence     
    TMR0_CNT_UP           = 100 // 256 - duration (motor speed)
    // Motor states
    RIGHT_FORWARD  = 0          // These can be re-ordered
    RIGHT_BACKWARD = 1
    RIGHT_HOLD     = 2
    RIGHT_IDLE     = 3
    LEFT_FORWARD   = 0           // Above states shifted 2 bits left (multiplied by 4)
    LEFT_BACKWARD  = 4      
    LEFT_HOLD      = 8 
    LEFT_IDLE      = 12
    GlobalVariables
    leftExcitationCntr          // current left motor excitation number
    rightExcitationCntr         // current right motor excitation number
    motorState                   // 4 bit function word for both motors
    excitations[] = {11000000b, // Excitation table - if the table is changed in size,
                     01100000b, // then the EXCITATION_TABLE_SIZE constant
                     00110000b, // must be changed
                     10010000b}
    Functions
    motorISR // Motor Interrupt Service Routine
       // Modifies global variables leftExcitationCntr and rightExcitationCntr as a function of motorState. 
       // It uses these counters as indices to read the motor excitation from the table and outputs it to PORTB.
       LocalVariables leftExcitation, rightExcitation
       if (motorState is RIGHT_FORWARD)
          if (rightExcitationCntr = EXCITATION_TABLE_SIZE-1)
             rightExcitationCntr = 0
          else
             increment rightExcitationCntr
          rightExcitation = excitations[rightExcitationCntr]
       else if (motorState is RIGHT_BACKWARD)
          if (rightExcitationCntr = 0)
             rightExcitationCntr = EXCITATION_TABLE_SIZE-1
          else
             decrement rightExcitationCntr
          rightExcitation = excitations[rightExcitationCntr]      
       else if (motorState is RIGHT_HOLD)
          rightExcitation = excitations[rightExcitationCntr]
       else // RIGHT_IDLE
          rightExcitation = 0
       shift rightExcitation 4 bits right
       if (motorState is LEFT_FORWARD)
          if (leftExcitationCntr = EXCITATION_TABLE_SIZE-1)
             leftExcitationCntr = 0
          else
             increment leftExcitationCntr
          leftExcitation = excitations[leftExcitationCntr]       
       else if (motorState is LEFT_BACKWARD)
          if (leftExcitationCntr = 0)
             leftExcitationCntr = EXCITATION_TABLE_SIZE-1
          else
             decrement leftExcitationCntr
          leftExcitation = excitations[leftExcitationCntr]           
       else if (motorState is LEFT_HOLD)
          leftExcitation = excitations[leftExcitationCntr]     
       else
          leftExcitation = 0
       PORTB = leftExcitation + rightExcitation
    end motorISR
    interrupt  // Main interrupt service routine gets control when TMR0 overflows
       if (TMR0 overflowed causing an interrupt)
          bit 4 of PORTA = 1         // signal motor step on
          call motorISR              // call motor interrupt service routine
          bit 4 of PORTA = 0         // signal motor step off
          TMR0 = TMR0_CNT_UP;        // reset TMR0 to proper count
    end interrupt
    main
       set TMR0 prescaler = 64     // divides clock by value set
       bit 4 of PORTA = 0           // signal motor step off
       leftExcitationCntr  = 0
       rightExcitationCntr = 0
       TMR0 =  TMR0_CNT_UP;
       enable TMR0 interrupts
       while (1)                    // continuously update motorState (and wait
          motorState = PORTA        //   for a TMR0 interrupt)
    end main
     

    جمع بندی:

    یک درایور معمولی موتور پله ای (هر چند ناقص) که مبتنی بر میکروکنترلر بود ,طراحی شده و با موفقیت ساخته شد.از آنجا که تنها 124 تا از 1024 کلمه حافظه PIC16F84  استفاده شد(در زبان اسمبلی) , می توان خواصی نظیر  افزایش سرعت و کاهش سرعت را نیز به آن اضافه نمود.همه 13 خط ورودی/خروجی در طرح حاضر استفاده شدند , بنابراین سیگنال های کنترلی خارجی اضافه بر این, به یک ارتقا در میکروکنترلرPIC  شما نیازمندند.با  PIC16F876  که دارای امکاناتی همچون "مدولاسیون پهنای پالس [5] " و تبدیل آنالوگ به دیجیتال است , ممکن است بتوانید درایو برشگر[6] طراحی نمایید.



    جواد میرباقری ::: سه شنبه 86/2/11::: ساعت 12:12 عصر
    نظرات دیگران: نظر

       1   2   3      >

    >> بازدیدهای وبلاگ <<
    بازدید امروز: 1
    بازدید دیروز: 0
    کل بازدید :41569

    >>اوقات شرعی <<

    >> درباره خودم <<

    >>آرشیو شده ها<<

    >>لوگوی وبلاگ من<<
    جواد میرباقری - تازه ها از الکترونیک

    >>لینک دوستان<<

    >>جستجو در وبلاگ<<
    جستجو:

    >>اشتراک در خبرنامه<<
     

    >>طراح قالب<<
    بزرگترین سایت جاوا اسکریپت ایران